Structured Triplet Learning with POS-tag Guided Attention for VQA

Zhe Wang¹, Xiaoyi Liu², Liangjian Chen¹, Limin Wang⁴, Yu Qiao³, Xiaohui Xie¹, Charless Fowlkes¹ ¹CS UC Irvine, ²Microsoft, ³SIAT CAS, ⁴CVL ETH

Visual Question Answering

Question: Why was the hand of the woman over the left shoulder of the man?

A: They were together and engaging in affection A: The woman was trying to get the man's attention A: The woman was trying to scare the man A: The woman was holding on to the man for balance

Visual question answering (VQA) tasks are of significant interest due to their potential as a strong test of image understanding systems and in probing the connection between language and vision. Despite much recent innovation, general VQA is far from a solved problem.

Our Approach

We explore four mechanisms for improving VQA performance

(i) POS Tag Guided Attention:

- (1) Some words (i.e., nouns, verbs and adjectives) matter more than others
- (2) We use seven POS categories (numbers, nouns, adjectives, verbs, wh-pronouns, wh-adverbs, other)

(ii) Convolutional N-Gram:

(1) We use a convolutional n-gram to integrate contextual information across word vectors.

(2) Contextual features for different window sizes are pooled to obtain a new word representation

(3) The final question / answer sentence is represented by an average of word representations $\mathbf{x}_Q = \frac{1}{M} \sum_{i=1}^M \tilde{e}_i.$

(iii) Triplet Attention:

We derive a spatial attention weight from the question and answer representations. where $\operatorname{norm}(\boldsymbol{x}) = \frac{\boldsymbol{x}}{\boldsymbol{\Sigma}(\boldsymbol{x})}$ $\textit{att}_{I} = \texttt{norm}\left(\lambda imes \textit{att}_{Q-I} + \textit{att}_{A_{i}-I}
ight)$

We use affinity matrix and max pooling to get both the attention from Question-Image and Answer-Image

(iv) Structured Triplet Learning:

We formulate VQA as a binary classification problem. For each candidate triplet $\{I,Q,A_i,t_i\}$, where $t_1=1$ and $t_i=0$ for I = 2, ..., N,

 $p_i = \texttt{sigmoid} \left(oldsymbol{W}_{QIA} oldsymbol{x}_{QIA_i} + oldsymbol{b}_{QIA}
ight)$ The output for the i th candidate answer is The full loss is $L = L_b + \lambda_2 L_s$ where $L_b = -\sum t_i \log p_i$

and

 $L_s = \max(max(\operatorname{margin} + p_i - p_1, 0))$

References

- [1] Fukui et al. *EMNLP*, 2016.
- [3] Jabri et al. *ECCV*, 2016.
- [4] Lu et al. *NIPS*, 2016
- [5] Teney et al. 2016. arXiv.1611.05546.
- [6] Zhu et al. *CVPR*, 2016.
- [7] Krishna, et al. 2016. arXiv.1602.07332.
- [8] Gan, et al. ICCV, 2017

Method	V7W	VQA
Our Baseline	65.6	58.3
+POS tag guided attention(POS-Att)	66.3	58.7
+Convolutional N-Gram (Conv N-Gram)	66.2	59.3
+POS-Att +Conv N-Gram	66.6	59.5
+POS-Att +Conv N-Gram +Triplet attention-Q	66.8	60.1
+POS-Att +Conv N-Gram +Triplet attention-A	67.0	60.1
+POS-Att +Conv N-Gram +Triplet attention-Q+A	67.3	60.2
+POS-Att +Conv N-Gram +Triplet attention-Q+A+	67.5	60.3
Structured Triplet Learning		

(f) find the optimal margin.

Method	Visual 7W	VQA Test Standard	VQA Test Dev
Co-Attention [4]	-	66.1	65.8
Attention-LSTM [6]	55.6	-	-
MCB + Att [1]	62.2	-	68.6
Zero-shot [5]	65.7	-	-
MLP [3]	67.1	68.9	65.2
VQS[8]	-	-	68.9
Full model (14*14 Resnet feature)	68.2	69.6	69.7

Benchmark comparison with previous work:

- training to improve the system.

Results & Analysis

Verification of our proposed (1) POS tag guided attention, (2) Conv N-Gram (3) Triplet Attention and (4) Structured Triplet Learning step by step. Integrating them all further improves the performance on Visual7W and VQA validation set. Notes: the feature is 7*7 on spatial resolution.

Exploration of good practice (a) Handling data imbalance (b) adjusting batch size (c) parameter to adjust convolutional n-gram and (d) where to add batch normalization (e) find the optimal λ_2

(1) We outperform the state-of-the-art performance on Visual7w and get competitive performance on VQA.

(2) Use POS-tagging to guide word attention, making pooled sentence vectors more meaningful and effective.

(3) Utilize hard-negative mining and the relationship among multiple answers corresponding to the same image-question pair during