

aws

SSCAP: Self-supervised Co-occurrence Action Parsing for Unsupervised Temporal Action Segmentation

Zhe Wang, *Hao Chen*, Xinyu Li, Chunhui Liu, Yuanjun Xiong, Joseph Tighe, Charless Fowlkes

Amazon AWS AI

Introduction: Temporal Action Segmentation

Temporal action segmentation is a task to classify each frame in the video with an action label.

- Full frame level supervision is untrimmed video is expensive
- Weakly supervision reduces the cost, but still heavily relies on some non-trivial expertise in annotation
- Can we do it in an *unsupervised* manner?

Challenges: Unsupervised Action Segmentation

- 1. To extract highly distinguishable visual representations for each individual frame
- 2. To capture the temporal relations among frames and sub-actions, and thus to well estimate number and the order of the occurrence of each sub-action (i.e., the temporal path)
- 3. Even more challenging when dealing with videos that contain activities with complex structures and recurrence of sub-actions

SSCAP: Self-supervised Co-occurrence Action Parsing

1. To extract highly distinguishable visual representations for each individual frame

SSCAP: uses self-supervised learning to extract features that are more temporal distinguishable

2. To capture the temporal relations among frames and sub-actions, and thus to well estimate number and the order of the occurrence of each sub-action (i.e., the temporal path)

SSCAP: designs Co-occurrence Action Parsing (CAP) algorithm to estimate the temporal path and decode the frames into sub-actions, by

- *leveraging the estimated prior of the co-occurrence relations of sub-actions*
- taking the recurrence of sub-actions into account and building the temporal location histogram

SSCAP achieves SOTA result on Breakfast, Salad, and FineGym (with more complexed action structures), even outperforms weakly-supervised solutions.

SSCAP: Overview

SSCAP: Feature Generation

Feature Generation

Features

Frame_1	
Frame n	
1	
Self-supervised Feature Learning	
Input Frames	

- SpeedNet^[1,2]:
 - Pre-define four frame rate settings [2,4,8,15];
 - Randomly select one out of these four settings to generate clips;
 - Predict which frame-rate the clip is sampled from (i.e., a 4-way classification).
- ShuffleLearn^[3]:
 - Shuffle M frames (0 < M < N) in a random order;
 - Flip the coin to decide whether to shuffle it or not when generating clips;
 - Predict whether a clip is shuffled or not.
- RotationNet^[4]:
 - Pre-define four rotation degree settings [0,90,180,270], with some randomness when we rotate, i.e., in [-30,30] degree;
 - Randomly select one out of these four settings to rotate the whole clip;
 - Predict which of the settings is the rotation on (i.e., a 4-way classification).

^[1] Dave Epstein et. al. "Oops! predicting unintentional action in video". In CVPR, 2020.

^[2] Sagie Benaim et. al. "Speednet: Learning the speediness in videos". In CVPR, 2020.

^[3] Ishan Misra et. al. "Shuffle and learn: Unsupervised learning using temporal order verification". In ECCV, 2016.

^[4] Spyros Gidaris et. al. "Un-supervised representation learning by predicting image rotations". In ICLR, 2018.

SSCAP: CAP - Clustering

Clustering:

•

- We extract all the frame-level features and cluster them into K-clusters using k-means (assuming K different subactions);
- Video Score Matrix $S \in \mathbb{R}^{K \times N}$:
 - Capture the score of each frame belonging to a cluster
 - $s_{(n,k)} = p(x_n|k) = \mathcal{N}(x_n; \mu_k, \Sigma_k)$
- Co-occurrence Matrix $C \in \mathbb{R}^{K \times K}$:
 - Capture the correlations among sub-actions underlying the native structure of activities
 - $c_{(i,j)} = \frac{o(i,j)}{o(j)}$, a conditional co-occurrence probability
- Cluster Temporal Location Histogram $H(t_n, k)$:
 - Estimate where each cluster generally locates in temporal dimension
 - $t_n = \frac{n}{N}$, the relevant timestamp in the video
 - For action recurrence each cluster may have multiple significant bins in the histogram

SSCAP: CAP - Decoding

- Refined Video Score Matrix $R \in \mathbb{R}^{K \times N}$:
 - Capture correlation information among sub-actions and global patterns of the activity structures;
 - Carefully select clusters k to avoid over-segmenting the video to the nonexisting classes. *Refined Video Score Matrix*

Initialization: G ← k₀ (k₀ is the cluster with the largest ratio of frames r(k₀) in current video).
k* = k₀
while len(G) ≤ K and r(k*)>0 do

For each remaining cluster j ∉ G:
update the video score matrix conditioned on the previous selected cluster k*:
R_m[j, n] = P(j|k*) · S_m[j, n]

2. Select the next cluster: k* ← arg max_j r(j).

```
3. Update: \mathcal{G} \leftarrow \mathcal{G} \cup \{k^*\}
```

end

- Temporal Path Estimation and Decoding:
 - Capture the multi-occur sub-actions and bi-directional sub-action transition;
 - For each cluster, we select top-K bins from temporal location histogram;
 - Then we concatenate the selected bins from all the clusters and order them into a time sequence based on their temporal locations;
 - Decoding: Viterbi algorithm^[1]

Results: Comparing with SOTA

Breakfast	MoF	F1 score	
Unsupervised setting			
GMM [48]	0.346	-	
LSTM + AL [1]	0.429*	-	
CTE [30]	0.418	0.264	
VTE-UNET [53]	0.481	-	
ASAL [35]	0.525	0.379	
Our SSCAP	0.511	0.392	
Weakly-supervised setting			
Action Sets [45]	0.284	-	
NNviterbi [46]	0.430	-	
SCT [16]	0.304	-	
SetViterbi [34]	0.408	-	
EnergySeg [33]	0.630	-	
Fully-supervised	Fully-supervised setting		
HTK [28]	0.259	-	
GTRM [24]	0.650	-	
MS-TCN [15]	0.663	-	
BCN [60]	0.704	-	

50Salads	MoF	F1 score
Unsupervised se	etting	
LSTM + AL [1]	0.606*	-
CTE [30]	0.355	-
VTE-UNET [53]	0.306	-
ASAL [35]	0.392	-
Our SSCAP	0.414	0.303
Weakly-supervi	sed setting	5
NNviterbi [46]	0.494	-
EnergySeg [33]	0.547	-
Fully-supervised	d setting	
HTK [28]	0.247	
GTRM [24]	0.826	-
MS-TCN [15]	0.734	-
BCN [60]	0.844	-

-

- SSCAP achieves SOTA on both Breakfast and 50Salads datasets in the unsupervised setting;
 - SSCAP on Breakfast even outperforms most of the weakly-supervised solutions;
- On FineGym (the challenging dataset), SSCAP achieves significant improvement to baseline, demonstrating the effectiveness of it in handling videos with more complex structures.

Results: Ablation Studies

Dataset	SS	C-Matrix	M-T-Path	MoF	F1
Breakfast				0.418	0.264
	\checkmark			0.508	0.391
	\checkmark	\checkmark		0.511	0.392
	\checkmark	\checkmark	\checkmark	0.511	0.392
50Salads				0.355	-
	\checkmark			0.372	0.281
	\checkmark	\checkmark		0.378	0.290
	\checkmark	\checkmark	\checkmark	0.414	0.303
FineGym				0.294	0.167
	\checkmark			0.425	0.246
	\checkmark	\checkmark		0.442	0.248
	\checkmark	\checkmark	\checkmark	0.666	0.297

- Self-supervised learning always helps;
- Co-occurrence matrix always helps, while on FineGym the improvement is more notable, indicating the importance of using the cooccurrence matrix while handling more complex scenarios;
- Multi-occur temporal path helps 50Salads and FineGym, but not Breakfast, as most of the subactions only occur once in Breakfast. The improvement on FineGym is significant.

Results: Ablation Studies

Feature Description	MoF	F1
eline		
IDT [30]	0.316	-
K400 I3D [30]	0.251	-
CTE [30]	0.418	0.264
supervised on K400		
K400 SpeedNet	0.508	0.391
K400 RotationNet	0.328	0.317
K400 shuffleLearn	0.339	0.328
supervised on Breakfast		
Breakfast SpeedNet	0.344	0.327
Breakfast RotationNet	0.307	0.319
Breakfast shuffleLearn	0.315	0.309
supervised first on K400, ther	n on Brea	akfast
K400, Breakfast, SpeedNet	0.501	0.337
K400, Breakfast, RotationNet	0.279	0.290
K400, Breakfast, shuffleLearn	0.292	0.318
	Feature DescriptionlineIDT [30]K400 I3D [30]CTE [30]supervised on K400K400 SpeedNetK400 RotationNetK400 RotationNetSupervised on BreakfastBreakfast SpeedNetBreakfast SpeedNetBreakfast RotationNetBreakfast SpeedNetSupervised first on K400, therK400, Breakfast, SpeedNetK400, Breakfast, SpeedNetK400, Breakfast, SpeedNetK400, Breakfast, RotationNetK400, Breakfast, RotationNetK400, Breakfast, RotationNetK400, Breakfast, RotationNet	Feature DescriptionMoFlineIDT [30]0.316K400 I3D [30]0.251CTE [30]0.418supervised on K4000.418K400 SpeedNet0.508K400 RotationNet0.328K400 shuffleLearn0.339supervised on Breakfast0.344Breakfast SpeedNet0.307Breakfast SpeedNet0.315supervised first on K400, then on Breakfast0.315supervised first on K400, then on Breakfast, SpeedNet0.501K400, Breakfast, RotationNet0.279K400, Breakfast, shuffleLearn0.292

- Self-supervised features always perform better than classical I3D feature pre-trained on Kinetics, indicating it's efficiency;
- RotationNet consistently performs worse than SpeedNet and ShuffleLearn, indicating that selfsupervised from temporal augmentation is important;
- SpeedNet, as one of the most emerging video selfsupervised learning approaches, performs the best;
- Larger dataset like Kinetics can help build better self-supervised representation, while smaller ones contain less variety. It's not needed to use target dataset to get a good feature re-presentation for the temporal action segmentation task.

Results: Visualization

GT P38_juice
Baseline
Ours
Images

- SSCAP is able to notably improve the segmentation quality;
- CAP algorithm is able to effectively suppressing the over-segmentation issue by introducing the co-occurrence relations among sub-actions in decoding;

aws

Conclusion

- Proposed SSCAP, an unsupervised temporal action segmentation solution that:
 - uses self-supervised methods in feature learning;
 - designs a co-occurrence action parsing algorithm that helps model the correlation among sub-actions and better handle complex activity structures in videos.
- SSCAP:
 - has achieved SOTA performance on three public benchmarks in unsupervised setting;
 - has even outperformed several recently proposed weakly-supervised methods;
 - is best designed from activities with complex action structures.

Contact: Hao Chen: <u>hxen@amazon.com</u> Zhe Wang: <u>zwang15@uci.edu</u>