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Introduction: Temporal Action Segmentation .aWS,

Temporal action segmentation is a task to classify each frame in the video with an action label.
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- Full frame level supervision is untrimmed video is expensive
- Weakly supervision reduces the cost, but still heavily relies on some non-trivial expertise in annotation

- Canwe doitin an unsupervised manner?



Challenges: Unsupervised Action Segmentation aWs

1. To extract highly distinguishable visual representations for each individual
frame

2. To capture the temporal relations among frames and sub-actions, and thus to

well estimate number and the order of the occurrence of each sub-action (i.e.,
the temporal path)

3. Even more challenging when dealing with videos that contain activities with
complex structures and recurrence of sub-actions



SSCAP: Self-supervised Co-occurrence Action Parsing dWS

1. To extract highly distinguishable visual representations for each individual frame
SSCAP: uses self-supervised learning to extract features that are more temporal distinguishable

2. To capture the temporal relations among frames and sub-actions, and thus to well estimate number and
the order of the occurrence of each sub-action (i.e., the temporal path)

SSCAP: designs Co-occurrence Action Parsing (CAP) algorithm to estimate the temporal path and
decode the frames into sub-actions, by

* Jeveraging the estimated prior of the co-occurrence relations of sub-actions
* taking the recurrence of sub-actions into account and building the temporal location histogram

SSCAP achieves SOTA result on Breakfast, Salad, and FineGym (with more complexed action structures),
even outperforms weakly-supervised solutions.



SSCAP: Overview adWSs
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SSCAP: Feature Generation adWs
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* SpeedNetl12l;
- Pre-define four frame rate settings [2,4,8,15];
- Randomly select one out of these four settings to generate clips;
- Predict which frame-rate the clip is sampled from (i.e., a 4-way classification).

 ShuffleLearn(3I:
- Shuffle M frames (0 < M < N) in a random order;

- Flip the coin to decide whether to shuffle it or not when generating clips;
- Predict whether a clip is shuffled or not.

* RotationNet/4!:

- Pre-define four rotation degree settings [0,90,180,270], with some randomness
when we rotate, i.e., in [-30,30] degree;

- Randomly select one out of these four settings to rotate the whole clip;

- Predict which of the settings is the rotation on (i.e., a 4-way classification).

[1] Dave Epstein et. al. “Oops! predicting unintentional action in video”. In CVPR, 2020.

[2] Sagie Benaim et. al. “Speednet: Learning the speediness in videos”. In CVPR, 2020.

[3] Ishan Misra et. al. "Shuffle and learn: Unsupervised learning using temporal order verification”. In ECCV, 2016.
[4] Spyros Gidaris et. al. “Un-supervised representation learning by predicting image rotations”. In ICLR, 2018.



SSCAP: CAP - Clustering

CAP - Clustering
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Clustering:
- We extract all the frame-level features and cluster them

into K-clusters using k-means (assuming K different sub-
actions);

Video Score Matrix S € RE*N .
- Capture the score of each frame belonging to a cluster

- Stnk) T p(xnlk) = N (xp; ik, k)

Co-occurrence Matrix C € RX %K ;
- Capture the correlations among sub-actions
underlying the native structure of activities
0@,j) L .
cci iy = ——=, a conditional co-occurrence probabilit
@) = o0 g Y
Cluster Temporal Location Histogram H(t,, k):
Estimate where each cluster generally locates in
temporal dimension

t, = %, the relevant timestamp in the video

For action recurrence each cluster may have multiple
significant bins in the histogram
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SSCAP: CAP - Decoding dWS

Refined Video Score Matrix R € REK XN .

CAP - Decoding - Capture correlation information among sub-actions and global patterns of
the activity structures;

- Carefully select clusters k to avoid over-segmenting the video to the non-

fé efined Video Score Matrix existing classes. Refined Video Score Matrix
= ! B BE B - Initialization: G < ko (ko is the cluster with the largest
g7 W ., . ratio of frames r(kg) in current video).
S 7 Timetocation . -k" = ko
while len(G) < K and (k" )>0 do
I. For each remaining cluster j & G:
\ - update the video score matrix conditioned on the
) . previous selected cluster £™:
Outputs: Parsing Results Ry ljn] = PGIk®) - Sonljonl
. - 2. Select the next cluster: k" < arg max; r(j).
3. Update: G < G U {k"}
end
 Temporal Path Estimation and Decoding:
- Capture the multi-occur sub-actions and bi-directional sub-action transition;
Temporal Path - For each cluster, we select top-K bins from temporal location histogram;
|_'—> —»‘—»'—». - Then we concatenate the selected bins from all the clusters and order them

into a time sequence based on their temporal locations;
- Decoding: Viterbi algorithm[!

[1] T. Quach and M Faroog. Maximum likelihood track formation with the Viterbi algorithm. In 8
IEEE Conference on Decision and Control, 1994.



Results: Comparing with SOTA

dWS

Breakfast MoF | Fl1 score
Unsupervised setting
GMM [48] 0.346 -
LSTM + AL [1] | 0.429* -
CTE [30] 0.418 0.264
VTE-UNET [53] | 0.481 -
ASAL [35] 0.525 0.379
Our SSCAP 0.511 0.392
Weakly-supervised setting
Action Sets [45] 0.284 -
NNviterbi [46] 0.430 -
SCT [16] 0.304 -
SetViterbi [34] 0.408 -
EnergySeg [33] 0.630 -
Fully-supervised setting
HTK [28] 0.259 -
GTRM [24] 0.650 -
MS-TCN [15] 0.663 -
BCN [60] 0.704 -

508alads MoF | FI score
Unsupervised setting
LSTM + AL [1] | 0.606* -
CTE [30] 0.355 -
VTE-UNET [53] | 0.306 -
ASAL [35] 0.392 -
Our SSCAP 0.414 0.303
Weakly-supervised setting
NNviterbi [46] 0.494 -
EnergySeg [33] 0.547 -
Fully-supervised setting
HTK [28] 0.247
GTRM [24] 0.826 -
MS-TCN [15] 0.734 -
BCN [60] 0.844 -

FineGym MoF | Fl1 score
Baseline [30] | 0.294 0.167
Our SSCAP | 0.666 0.297

SSCAP achieves SOTA on both Breakfast
and 50Salads datasets in the unsupervised

setting;

SSCAP on Breakfast even outperforms
most of the weakly-supervised solutions;

On FineGym (the challenging dataset),
SSCAP achieves significant improvement
to baseline, demonstrating the
effectiveness of it in handling videos with
more complex structures.



Results: Ablation Studies

Dataset | SS C-Matrix M-T-Path | MoF F1
0.418 | 0.264

v 0.508 | 0.391
Breakfast | v 0.511 | 0.392
v v v 0.511 | 0.392

0355 | -

v 0.372 | 0.281
S05alads | v 0.378 | 0.290
v v v 0.414 | 0.303

0.294 | 0.167

FineGom | 0.425 | 0.246
v v 0.442 | 0.248

v v v 0.666 | 0.297

dWS
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- Self-supervised learning always helps;

- Co-occurrence matrix always helps, while on
FineGym the improvement is more notable,
indicating the importance of using the co-
occurrence matrix while handling more complex
scenarios;

- Multi-occur temporal path helps 50Salads and
FineGym, but not Breakfast, as most of the sub-
actions only occur once in Breakfast. The
improvement on FineGym is significant.
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Results: Ablation Studies

Feature Description MoF Fl
Baseline
(a) IDT [30] 0.316 -
(b) K400 I3D [30] 0.251 -
(c) CTE [30] 0.418 | 0.264
Self-supervised on K400
(d) K400 SpeedNet 0.508 | 0.391
(e) K400 RotationNet 0.328 | 0.317
(f) K400 shuffleLearn 0.339 | 0.328
Self-supervised on Breakfast
(g) Breakfast SpeedNet 0.344 | 0.327
(h) Breakfast RotationNet 0.307 | 0.319
(1) Breakfast shuffleLearn 0.315 | 0.309
Self-supervised first on K400, then on Breakfast
() K400, Breakfast, SpeedNet 0.501 | 0.337
(k) | K400, Breakfast, RotationNet | 0.279 | 0.290
(1) | K400, Breakfast, shuffleLearn | 0.292 | 0.318

dWS

v_)

Self-supervised features always perform better
than classical 13D feature pre-trained on Kinetics,
indicating it’s efficiency;

RotationNet consistently performs worse than
SpeedNet and ShuffleLearn, indicating that self-
supervised from temporal augmentation is
important;

SpeedNet, as one of the most emerging video self-
supervised learning approaches, performs the
best;

Larger dataset like Kinetics can help build better
self-supervised representation, while smaller ones
contain less variety. It’s not needed to use target
dataset to get a good feature re-presentation for
the temporal action segmentation task.

11



Results: Visualization aws
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Conclusion

Proposed SSCAP, an unsupervised temporal action
segmentation solution that:
- uses self-supervised methods in feature

learning;

- designs a co-occurrence action parsing
algorithm that helps model the correlation
among sub-actions and better handle
complex activity structures in videos.

SSCAP:
- has achieved SOTA performance on three

public benchmarks in unsupervised setting;

- has even outperformed several recently
proposed weakly-supervised methods;

- is best designed from activities with complex
action structures.
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Contact:
Hao Chen: hxen@amazon.com

Zhe Wang: zwangl5@uci.edu
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